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Abstract. The direct reconstruction of the pp elastic-scattering amplitudes and fixed-energy Saclay-Geneva
phase shift analyses have been carried out at 1.80, 2.10, 2.40 and 2.70GeV where complete sets of observ-
ables have recently been measured at SATURNE. They provide unique phase shift analysis solutions at
1.80, 2.10 and 2.40GeV and two solutions at 2.70GeV. Results of the direct amplitude reconstruction and
the Saclay-Geneva phase shift analyses agree at all energies. Results are also compared to the Virginia
Polytechnic Institute phase-shift predictions below 2.55GeV and observed differences are discussed.

1 Introduction

During 1992-1995, pp spin observables have been mea-
sured at SATURNE II using a polarized proton beam
and a polarized target, in particular at 1.80, 2.10, 2.40
and 2.70 GeV. These data, in conjunction with previous
SATURNE II spin observable measurements at the same
energies, form complete data sets. In this paper we use
these sets to do: 1) a direct reconstruction of scattering
amplitudes (DRSA) at a few CM angles, 2) a fixed-energy
phase shift analysis (PSA) using the Saclay-Geneva PSA
program described in our previous papers [1–3]. These two
results are presented and compared.

As well as the previously mentioned SATURNE II data
consisting of 10 to 12 different spin observables [4–19], dif-
ferential cross sections data, measured mainly at ZGS and
COSY, were added to the data base. The data base was
completed with data measured at nearby energies [20–35].
Data in the forward direction were also included, i.e. spin-
independent total cross sections, the spin-dependent total
cross section differences ∆σT and ∆σL, the fitted total in-
elastic cross sections [36] and the real to imaginary ampli-
tude ratios calculated from dispersion relations [37]. The
final data base for the PSA consisted of 445, 612, 545 and
303 data points at 1.80, 2.10, 2.40 and 2.70 GeV, respec-
tively. Of course only part of these data were considered in
the DRSA as such a reconstruction is performed at a few
angular points where the number of different experimental
points is sufficient.

The status of the DRSA is as follows: before 1975,
the direct reconstruction was only possible for pp elastic
scattering at 90�(CM) at a few energies [38]. The first
direct reconstruction over a large angular region was car-
ried out using the 0.59 GeV PSI data and was reported in
[39]. Similar reconstructions have been subsequently per-

formed using LAMPF data at 0.73 GeV [40], PSI data
below 0.59 GeV [41] and LAMPF data at 0.8 GeV [42].
At higher energy, an amplitude analysis was performed
[43] using the 6 GeV/c ANL-ZGS data [44]. Finally the
SATURNE II data have also allowed a DRSA analysis at
11 energies between 0.83 and 2.70 GeV [45]. In this later
analysis, two solutions were found at a few energies, one in
good agreement with PSA: however, the correct solution
could not be identified using only the χ2 values. Measure-
ment of additional parameters has removed this ambigu-
ity: the remaining solution is the one consistent with PSA.

The status of the pp PSA is as follows: below 0.6 GeV
complete sets of observables have been measured over a
large angular range ensuring unique PSA solutions. At
higher energies complete sets of observables do not guar-
antee unique PSA solution. For instance, in [3] two solu-
tions were found at 1.30 GeV, in the present paper two
PSA solutions appear at 2.70 GeV. This is due to a large
number of complex phase shifts to fit. To add further con-
straints we made use of additional information in partic-
ular the ratio of the real-to-imaginary parts of the spin-
independent forward scattering amplitude [37], the inelas-
tic parts of high orbital momentum phase shifts, as calcu-
lated by a dispersion relation method of the Paris group
[46–48]. In the present paper, two PSA solutions appear
at 2.70 GeV, a unique solution has been found at the three
other energies.

The fact that the DRSA and PSA solutions agree
shows that our choice of phase shifts is reasonable, but
not unique. Some other choice of inelasticities might also
have resulted in satisfactory solutions.

In Sect. 2, the nucleon-nucleon formalism necessary for
the PSA and DRSA is described. The complementarity of
the two analysis methods is discussed in Sect. 3. Section 4
gives details about the data base used and the theoretical
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Table 1. Data sets of observables used in PSA at four energies. The “pure” observables are given in Table 1a. The
observable combinations, calculated and fitted data, total number of points and χ2 values per degree of freedom
(DF) obtained in PSA are listed in Table 1b

Table 1a

Observables 1.80GeV 2.10GeV 2.40GeV 2.70GeV
Ref. Points Ref. Points Ref. Points Ref. Points

σ0tot [20] 1 [20] 1 [20] 2 [20] 1
σ1tot [5,21,22] 3 [5] 1 [5] 1 [22] 1
∆σL [4,23] 2 [24] 1 [24,31] 2 [4,24] 2

dσ/dΩ [26,27,28,32] 99 [26,28,29,32] 92 [26,28,30,32] 112 [26,28,31] 79
Aoono, Aooon [6,19,33] 79 [6,17,19] 123 [6,15,17,19,34] 193 [6,19,34] 72

Aoonn [7,19] 55 [7,19] 84 [7,19] 110 [7,19] 62
Aookk [8,9] 55 [8,9,35] 99 [8,9,35] 49 [8,35] 38
Aoosk [9,10,16] 48 [9,10,16] 59 [9,10] 25 [9,10,16] 18
Donon [12,13,16] 14 [12,13,16,18] 27 [12,18] 13 [12,18] 5
Konno [12,16] 9 [12,16,18] 21 [12,18] 12 [12,18] 5
Dos”ok [11,14,16] 18 [11,14,16] 20 [11,14] 7 [11,14] 5
Kos”ko [11] 8 [11] 9 [11] 4 [11] 3
Kos”so [14,16] 8 [16] 3 [14] 1 0
Nonkk [11] 4 [11] 10 [11] 1 0
Nonsk [16] 3 [11] 3 0 0
Nos”sn [16] 3 [11] 3 0 0
Nos”nk [14] 3 0 [14] 1 [14] 1

Table 1b

Combinations 1.80GeV 2.10GeV 2.40GeV 2.70GeV Ref.
of Observables Points Points Points Points

Konno, Kok”so 4 0 1 1 [14]
Nonsk, Nok”nk 0 0 1 1 [14]

Konno, Kok”so, Nonsk, Nok”nk 6 18 3 2 [14]
Nonkk, Kok”ko 6 0 3 3 [11]
Nos”nk, Kos”so 5 18 3 2 [14]

Nos”kn, Nos”sn, Nok”kn 6 9 0 0 [13]
Kos”ko, Kos”so, Kok”ko 4 9 0 0 [13]

σtot(inel.) – fitted 1 1 1 1 [36]
<e (a + b)/=m (a + b) (calc.) 1 1 1 1 [42]

Total points (Tables 1a and 1b) 445 612 545 303

χ2/DF 1.10 1.16 1.07 0.95 A
0.92 B

input to the PSA. Section 5 describes the minimization
procedure for the two methods. Results are presented and
discussed in Sect. 6.

2 Scattering matrix and observables

Assuming parity conservation, time reversal and isospin
invariance, the scattering matrix is written in terms of
complex amplitudes a, b, c, d and e as [49]

M(kf ,ki) =
1
2

[(a + b) + (a − b)(σ1,n)(σ2,n)

+(c + d)(σ1,m)(σ2,m)
+(c − d)(σ1, `̀)(σ2, `̀) + e(σ1 + σ2,n)] (2.1)

where σ1 and σ2 are the Pauli 2x2 matrices, ki and kf

are the unit vectors in the direction of the incident and
scattered particles, respectively, and

n =
[ki × kf ]
|[ki × kf ]| , m =

kf − ki

|kf − ki| , `̀ =
kf + ki

|kf + ki| . (2.2)

The subscripts of an observable Xsrbt refer to the po-
larization states of the scattered, recoil, beam and tar-
get particles, respectively. For the so-called “pure experi-
ments”, the polarizations of the incident and target parti-
cles in the laboratory system are oriented along the basis
unit vectors k, n, s = [n × k]. In our energy region only
the recoil proton polarization was analyzed in the second
scattering. The base vectors are in the directions k”, n,
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Table 2. Phase shifts and mixing parameters at four energies. The values shown without
errors were fixed

Tkin Real Parts of Phase Shifts (deg)
(GeV) Imaginary Parts of Phase Shifts (deg)

1S0
3P0

3P1
3P2 ε2

1.80 −65.27 ± 3.67 −61.72 ± 1.01 −69.75 ± 2.51 −10.40 ± 2.33 −1.12 ± 0.76
+5.71 ± 2.45 0.0 +9.52 ± 1.75 +27.10 ± 1.34

2.10 −58.46 ± 1.59 −57.16 ± 0.88 −61.22 ± 1.14 −7.40 ± 1.48 −0.20 ± 0.55
+0.89 ± 1.36 0.0 +8.53 ± 0.85 +28.33 ± 1.43

2.40 −63.89 ± 3.83 −57.78 ± 0.77 −63.94 ± 1.53 −34.70 ± 3.12 −2.09 ± 0.65
+10.51 ± 3.81 0.0 +16.84 ± 1.60 +34.87 ± 1.86

2.70A −62.23 ± 4.41 −51.63 ± 2.87 −46.26 ± 1.91 −32.20 ± 5.64 +0.13 ± 1.04
+0.76 ± 3.50 0.0 +0.53 ± 1.06 +24.36 ± 2.34

2.70B −59.43 ± 7.23 −72.31 ± 9.46 −62.63 ± 3.09 −49.59 ± 5.02 −1.48 ± 1.72
+0.87 ± 4.44 +20.22 ± 7.37 +15.87 ± 2.89 +49.48 ± 7.56

1D2
3F2

3F3
3F4 ε4

1.80 −20.23 ± 0.72 −22.83 ± 1.38 −18.75 ± 0.80 +4.74 ± 0.46 −1.12 ± 0.50
+14.45 ± 1.56 +12.13 ± 0.86 +10.28 ± 0.63 +8.28 ± 0.63

2.10 −24.97 ± 0.39 −26.12 ± 1.10 −18.92 ± 0.50 +0.40 ± 0.41 −0.91 ± 0.36
+12.12 ± 1.02 +16.03 ± 0.97 +10.70 ± 0.41 +10.70 ± 0.44

2.40 −27.93 ± 1.10 −18.76 ± 1.41 −23.53 ± 1.01 −0.74 ± 0.79 −1.70 ± 0.40
+15.16 ± 1.69 +12.36 ± 0.67 +9.28 ± 0.71 +14.80 ± 1.07

2.70A −30.06 ± 0.96 −20.81 ± 3.15 −18.78 ± 2.06 −8.03 ± 1.43 −3.01 ± 0.46
+20.04 ± 2.32 +13.68 ± 1.49 +21.32 ± 1.57 16.70 ± 1.24

2.70B −28.27 ± 0.93 −9.635 ± 1.30 −19.23 ± 1.97 −14.12 ± 1.90 −2.60 ± 0.85
+16.70 ± 2.00 +11.94 ± 3.76 +14.53 ± 1.59 +24.53 ± 1.89

1G4
3H4

3H5
3H6 ε6

1.80 −1.85 ± 0.51 −4.26 ± 0.68 −4.02 ± 0.36 +3.45 ± 0.29 −1.41 ± 0.25
+7.60 ± 0.18 +5.46 ± 0.40 +3.95 ± 0.30 +2.09 ± 0.25

2.10 −4.95 ± 0.39 −7.45 ± 0.47 −4.53 ± 0.26 +2.93 ± 0.18 −2.35 ± 0.18
+9.35 ± 0.22 +6.12 ± 0.41 +6.01 ± 0.27 +4.12 ± 0.23

2.40 −7.59 ± 0.60 −5.19 ± 0.93 −6.06 ± 0.31 +2.14 ± 0.31 −2.06
+10.01 ± 0.33 +6.89 ± 0.60 +6.34 ± 0.41 +5.21 ± 0.38

2.70A −8.87 ± 0.88 −2.19 ± 0.73 −6.69 ± 0.45 +1.91 ± 0.56 −2.12
+9.55 ± 0.75 +4.29 ± 1.05 +8.69 ± 0.73 +9.39

2.70B −8.31 ± 0.63 −3.80 ± 0.92 −7.67 ± 0.89 −0.58 ± 0.85 −2.12
+10.39 ± 0.57 +0.44 ± 0.88 +7.01 ± 0.32 +9.39

1I6
3J6

3J7
3J8 ε8

1.80 +2.30 ± 0.33 +0.37 ± 0.31 −2.17 +0.98 ± 0.10 −1.04
+2.80 ± 0.27 +0.81 +1.74 +0.24 fixed

2.10 +0.89 ± 0.29 −0.20 ± 0.25 −2.32 +1.28 ± 0.10 −1.11
+3.66 ± 0.18 +1.05 +2.50 +0.59

2.40 −0.05 ± 0.44 −2.09 ± 0.29 −2.45 +2.72 ± 0.13 −1.16
+2.61 ± 0.27 +1.30 +2.63 +1.18

2.70A +0.06 ± 0.39 +1.12 ± 0.69 −2.56 +1.47 ± 0.46 −1.20
+4.28 ± 0.46 +2.91 ± 0.59 +3.06 +1.99

2.70B +0.35 ± 0.44 +0.29 ± 0.68 −2.56 +0.31 ± 0.36 −1.20
+4.74 ± 0.57 +1.70 ± 0.31 +3.06 +1.99
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Table 2. (continued)

Tkin Real Parts of Phase Shifts (deg)
(GeV) Imaginary Parts of Phase Shifts (deg)

All phase shifts are fixed
1K8

3L8
3L9

3L10 ε10
1M10

3N10

1.80 +0.50 +0.48 −1.19
+0.79 +0.24 +0.47

2.10 +0.50 +0.54 −1.29
+1.07 +0.34 +0.65

2.40 +0.50 +0.59 −1.38 +1.55 −0.71 +0.36 +0.32
+1.35 +0.88 +0.82 +1.55 +0.45 +0.16

2.70AB +0.50 +0.63 −1.46 +0.42 −0.75 +0.36 +0.35
+1.64 +1.10 +0.98 +0.47 +0.57 +0.21

Fig. 1. Phase shift analyses results: Real and imaginary parts
of 1S0, 1D2, 1G4 and 1I6 phase shifts in degrees. Open stars
denote the present results and the solution 2.70A, open circles
correspond to 2.70B. Black stars and black dots are the results
from [3] (two solutions at 1.30GeV were found). Solid lines are
the VPI PSA [66], dashed lines are the OPE phase shifts

s ”= [n × k”], where the unit vector k” is oriented along
the direction of the recoil particle momentum.

The pp scattering matrix contains the isotriplet (M1)
matrix only. Ignoring the electromagnetic interactions, the
symmetry relations with respect to 90�CM for different
amplitudes are given in [49]. Taking into account funda-
mental conservation laws, we express the contributing ob-
servables in terms of five scattering amplitudes a, b, c, d,
and e from (2.1).

Fig. 2. Phase shift analyses results: Real and imaginary parts
of 3P0, 3P1, 3P2, and mixing parameter ε2. Symbols are as in
Fig. 1

In the forward direction, amplitude e = 0 and a(0) −
b(0) = c(0) + d(0). Three “optical theorems” linearly re-
late the imaginary parts of the non-vanishing amplitudes
with three total cross sections. The general expression of
the total cross section for a polarized nucleon beam trans-
mitted through a polarized proton target, with arbitrary
directions of beam and target polarizations, was first de-
duced in [50, 51]. Following [49] it is written in the form

σtot = σ0tot + σ1tot(PB ,PT ) + σ2tot(PB ,k)(PT ,k) (2.3)

where PB and PT are the beam and target polarization.
The term σ0tot is the spin-independent total cross section,
σ1tot and σ2tot are the spin-dependent contributions. They
are related to the forward scattering amplitudes

σ0tot = (2π/K)=m [a(0) + b(0)] (2.4a)
σ1tot = (2π/K)=m [c(0) + d(0)] (2.4b)
σ2tot = −(4π/K)=m [d(0)] (2.4c)

where K is the wave number in the CM system.
The total cross sections σtot and σ0tot are positive def-

inite quantities. The spin-dependent contributions σ1tot

and σ2tot are related to measurable quantities ∆σT and
∆σL by

−∆σT = 2σ1tot (2.5)
−∆σL = 2(σ1tot + σ2tot) . (2.6)
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Table 3. Scattering amplitudes at 1.80GeV. The ratios of χ2/DF are given in brackets after the
solution number in all following tables

Amplitude θ = 32.6◦ θ = 32.6◦ θ = 35.9◦ θ = 35.9◦

(
√

mb/sr) Sol. 1 (0.47) Sol. 2 (0.42) Sol. 1 (0.63) Sol. 2 (0.50)

<e a +0.817 ± 0.184 +1.838 ± 0.437 +0.732 ± 0.114 +1.298 ± 0.506
=m a +1.243 ± 0.421 +1.449 ± 0.474 +1.256 ± 0.235 −1.560 ± 0.239
<e b +0.478 ± 0.313 +0.725 ± 0.903 +0.344 ± 0.284 +0.881 ± 0.478
=m b +1.904 ± 0.148 +1.626 ± 0.554 +1.604 ± 0.096 −1.344 ± 0.370
<e c −0.360 ± 0.350 −0.028 ± 0.405 −0.346 ± 0.236 −0.497 ± 0.209
=m c −0.171 ± 0.483 −0.915 ± 0.174 −0.192 ± 0.349 −0.113 ± 0.236
<e d −0.790 ± 0.388 −0.227 ± 0.171 −0.705 ± 0.144 −0.561 ± 0.156
=m d −0.125 ± 0.316 −0.858 ± 0.174 −0.123 ± 0.247 −0.101 ± 0.171
<e e +2.059 ± 0.459 +0.915 ± 0.219 +1.631 ± 0.245 +0.919 ± 0.358

Amplitude θ = 35.9◦ θ = 37.9◦ θ = 37.9◦ θ = 40.9◦

(
√

mb/sr) Sol. 3 (0.59) Sol. 1 (0.95) Sol. 2 (0.84) Sol. 1 (0.40)

<e a +1.828 ± 0.511 +0.814 ± 0.183 +1.577 ± 0.665 +1.059 ± 0.395
=m a +1.072 ± 0.781 +1.401 ± 0.152 −1.167 ± 0.759 +1.251 ± 0.231
<e b +1.591 ± 0.137 +0.291 ± 0.373 +0.843 ± 0.617 +1.185 ± 0.193
=m b −0.296 ± 0.738 +1.466 ± 0.112 −1.244 ± 0.438 +0.463 ± 0.443
<e c −0.386 ± 0.252 −0.460 ± 0.194 −0.412 ± 0.209 −0.277 ± 0.181
=m c +0.298 ± 0.295 −0.103 ± 0.426 −0.130 ± 0.255 −0.097 ± 0.262
<e d −0.144 ± 0.220 −0.417 ± 0.179 −0.312 ± 0.178 −0.051 ± 0.138
=m d −0.583 ± 0.156 −0.113 ± 0.369 −0.015 ± 0.191 −0.367 ± 0.136
<e e +0.652 ± 0.182 +1.237 ± 0.274 +0.638 ± 0.269 +0.616 ± 0.227

Amplitude θ = 40.9◦ θ = 45.8◦ θ = 45.8◦ θ = 51.2◦

(
√

mb/sr) Sol. 2 (0.59) Sol. 1 (0.32) Sol. 2 (0.31) Sol. 1 (0.41)

<e a +1.059 ± 0.395 +0.356 ± 0.050 +0.459 ± 0.114 +0.199 ± 0.032
=m a +1.251 ± 0.231 +0.887 ± 0.107 +1.046 ± 0.069 +0.565 ± 0.103
<e b +1.185 ± 0.193 +0.128 ± 0.204 +0.074 ± 0.291 +0.310 ± 0.220
=m b +0.463 ± 0.443 +0.954 ± 0.057 +0.933 ± 0.062 +0.647 ± 0.119
<e c −0.277 ± 0.181 −0.023 ± 0.251 +0.077 ± 0.246 +0.052 ± 0.175
=m c −0.097 ± 0.262 −0.287 ± 0.154 −0.354 ± 0.067 −0.201 ± 0.071
<e d −0.051 ± 0.138 −0.359 ± 0.156 +0.032 ± 0.127 −0.255 ± 0.089
=m d −0.367 ± 0.136 −0.225 ± 0.110 −0.352 ± 0.054 −0.160 ± 0.086
<e e +0.616 ± 0.227 +0.915 ± 0.113 +0.708 ± 0.170 +0.739 ± 0.094

Amplitude θ = 51.2◦ θ = 55.5◦ θ = 55.5◦ θ = 66.0◦

(
√

mb/sr) Sol. 2 (0.45) Sol. 1 (0.37) Sol. 2 (0.32) Sol. 1 (0.64)

<e a +0.227 ± 0.056 +0.150 ± 0.031 +0.165 ± 0.048 +0.037 ± 0.005
=m a +0.673 ± 0.126 +0.497 ± 0.113 +0.559 ± 0.144 +0.282 ± 0.037
<e b +0.086 ± 0.215 +0.414 ± 0.171 +0.473 ± 0.110 +0.205 ± 0.134
=m b +0.689 ± 0.072 +0.448 ± 0.162 +0.382 ± 0.124 +0.408 ± 0.071
<e c +0.175 ± 0.215 −0.267 ± 0.086 +0.268 ± 0.089 +0.095 ± 0.101
=m c −0.216 ± 0.080 +0.055 ± 0.165 −0.069 ± 0.115 −0.188 ± 0.035
<e d +0.070 ± 0.183 +0.124 ± 0.123 −0.238 ± 0.092 −0.070 ± 0.139
=m d −0.228 ± 0.094 −0.204 ± 0.072 +0.067 ± 0.076 −0.178 ± 0.073
<e e +0.657 ± 0.145 +0.656 ± 0.104 +0.596 ± 0.150 +0.594 ± 0.026

Amplitude θ = 73.9◦ θ = 73.9◦ θ = 81.9◦ θ = 81.9◦

(
√

mb/sr) Sol. 1 (0.42) Sol. 2 (0.45) Sol. 1 (0.62) Sol. 2 (0.40)

<e a +0.032 ± 0.004 +0.033 ± 0.005 +0.012 ± 0.004 +0.011 ± 0.004
=m a +0.121 ± 0.054 +0.188 ± 0.030 +0.085 ± 0.055 +0.107 ± 0.038
<e b +0.166 ± 0.110 −0.015 ± 0.157 +0.144 ± 0.103 −0.052 ± 0.129
=m b +0.314 ± 0.062 +0.364 ± 0.020 +0.260 ± 0.063 +0.297 ± 0.035
<e c −0.136 ± 0.068 −0.054 ± 0.088 +0.157 ± 0.058 −0.127 ± 0.065
=m c −0.145 ± 0.042 −0.174 ± 0.031 −0.158 ± 0.041 −0.177 ± 0.035
<e d −0.190 ± 0.052 +0.139 ± 0.067 −0.204 ± 0.046 +0.171 ± 0.059
=m d −0.109 ± 0.061 −0.180 ± 0.028 −0.092 ± 0.059 −0.141 ± 0.045
<e e +0.587 ± 0.022 +0.566 ± 0.024 +0.579 ± 0.022 +0.576 ± 0.022
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Table 3. (continued)

Amplitudes at 1.80GeV. The ratios of χ2/DF are given
in brackets after the solution number

Amplitude θ = 86.5◦ θ = 86.5◦ θ = 90.0◦

(
√

mb/sr) Sol. 1 (0.66) Sol. 2 (0.68) Sol. 1 (0.85)

<e a +0.001 ± 0.004 +0.001 ± 0.004 −0.013 ± 0.004
=m a +0.043 ± 0.045 +0.034 ± 0.039 +0.032 ± 0.041
<e b +0.109 ± 0.108 −0.059 ± 0.114 +0.108 ± 0.112
=m b +0.250 ± 0.057 +0.264 ± 0.042 +0.267 ± 0.053
<e c +0.156 ± 0.064 −0.156 ± 0.064 +0.077 ± 0.090
=m c −0.180 ± 0.040 −0.183 ± 0.039 −0.182 ± 0.034
<e d −0.199 ± 0.054 +0.183 ± 0.058 −0.185 ± 0.061
=m d −0.114 ± 0.056 −0.132 ± 0.048 −0.140 ± 0.046
<e e +0.603 ± 0.022 +0.605 ± 0.022 +0.606 ± 0.018

In the forward direction, the quantity

ρ = <e [a(0) + b(0)]/=m [a(0) + b(0)] (2.7)

can be calculated using the dispersion relation calcula-
tions [37]. The integral of the differential cross section
is the total elastic cross section σtot(el.). The difference
σ0tot − σtot(el.) is the total inelastic or reaction cross sec-
tion σtot(inel.). It can also be determined as the sum of
individual reaction total cross sections over all inelastic
reaction channels [36]. The measured observables given in
(2.4a), (2.5) and (2.6), the calculated quantities given in
(2.7) and σtot(inel.) are introduced in the PSA, but are
not used the DRSA because it is not performed in the
forward direction.

In the following we give relations between scattering
amplitudes and observables at any angle. Only the ob-
servables used in the analyses are listed. We denote by θ
the CM scattering angle and by θ2 the laboratory angle
of the recoil particle.

σ =
dσ

dΩ
=

1
2

[|a|2 + |b|2 + |c|2 + |d|2 + |e|2] (2.8)

σAoonn =
1
2

[|a|2 − |b|2 − |c|2 + |d|2 + |e|2] (2.9)

σDonon =
1
2

[|a|2 + |b|2 − |c|2 − |d|2 + |e|2] (2.10)

σKonno =
1
2

[|a|2 − |b|2 + |c|2 − |d|2 + |e|2] (2.11)

σAoono = σAooon =
σPonoo = σNonnn = <e a?e (2.12)
σAooss = +<e a?d cos θ − =m d?e sin θ

+<e b?c (2.13)
σAookk = −<e a?d cos θ + =m d?e sin θ

+<e b?c (2.14)
σAoosk = −<e a?d sin θ − =m d?e cos θ (2.15)

σDos”ok = +<e a?b sin(θ + θ2) − <e c?d sin θ2

+=m b?e cos(θ + θ2) (2.16)
σKos”so = −<e a?c cos(θ + θ2)

−<e b?d cos θ2 + =m c?e sin(θ + θ2) (2.17)

Fig. 3. Phase shift analyses results: Real and imaginary parts
of 3F2, 3F3, 3F4, and mixing parameter ε4. Symbols are as in
Fig. 1

Fig. 4. Phase shift analyses results: Real and imaginary parts
of 3H4, 3H5, 3H6, and mixing parameter ε6. Symbols are as in
Fig. 1
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Table 4. Scattering amplitudes at 2.10GeV. The ratios of χ2/DF are given in brackets
after the solution number

Amplitude θ = 33.0◦ θ = 33.0◦ θ = 36.0◦ θ = 36.0◦

(
√

mb/sr) Sol. 1 (0.59) Sol. 2 (0.46) Sol. 3 (0.59) Sol. 1 (0.47)

<e a +0.638 ± 0.090 +0.677 ± 0.289 +1.322 ± 0.492 +0.535 ± 0.129
=m a +1.063 ± 0.252 −1.267 ± 0.647 +1.352 ± 0.281 +1.064 ± 0.274
<e b +0.001 ± 0.260 +0.198 ± 0.241 +0.415 ± 0.653 −0.063 ± 0.285
=m b +1.574 ± 0.091 −1.632 ± 0.053 −1.505 ± 0.171 +1.320 ± 0.065
<e c −0.044 ± 0.225 +0.303 ± 0.206 +0.464 ± 0.234 +0.083 ± 0.250
=m c −0.568 ± 0.258 −0.041 ± 0.124 −0.377 ± 0.255 −0.357 ± 0.206
<e d −0.157 ± 0.234 −0.027 ± 0.119 +0.565 ± 0.221 −0.099 ± 0.296
=m d −0.506 ± 0.201 −0.219 ± 0.094 +0240. ± 0.179 −0.315 ± 0.181
<e e +1.643 ± 0.222 +1.552 ± 0.660 +0.794 ± 0.296 +1.283 ± 0.302

Amplitude θ = 36.0◦ θ = 38.0◦ θ = 38.0◦ θ = 41.0◦

(
√

mb/sr) Sol. 2 (0.36) Sol. 1 (0.54) Sol. 2 (0.54) Sol. 1 (0.48)

<e a +0.781 ± 0.257 +0.525 ± 0.187 +0.722 ± 0.367 +0.389 ± 0.077
=m a −1.314 ± 0.053 +1.106 ± 0.192 +1.192 ± 0.050 +0.870 ± 0.111
<e b +0.170 ± 0.193 +0.077 ± 0.316 −0.135 ± 0.241 +0.321 ± 0.182
=m b −1.316 ± 0.066 +1.221 ± 0.056 +1.204 ± 0.052 +0.930 ± 0.079
<e c +0.342 ± 0.205 +0.132 ± 0.233 −0.300 ± 0.157 +0.225 ± 0.183
=m c −0.043 ± 0.110 −0.262 ± 0.145 +0.170 ± 0.263 −0.201 ± 0.161
<e d −0.122 ± 0.142 +0.097 ± 0.208 +0.277 ± 0.179 +0.216 ± 0.167
=m d −0.218 ± 0.112 −0.269 ± 0.140 +0.030 ± 0.209 −0.283 ± 0.160
<e e +0.880 ± 0.285 +0.973 ± 0.342 +0.710 ± 0.362 +0.850 ± 0.161

Amplitude θ = 41.0◦ θ = 45.8◦ θ = 45.8◦ θ = 55.1◦

(
√

mb/sr) Sol. 2 (0.56) Sol. 1 (0.78) Sol. 2 (0.50) Sol. 1 (1.00)

<e a +0.741 ± 0.279 +0.233 ± 0.037 +0.532 ± 0.285 +0.081 ± 0.021
=m a −0.952 ± 0.157 +0.650 ± 0.090 −0.752 ± 0.142 +0.325 ± 0.069
<e b +0.597 ± 0.193 +0.223 ± 0.132 +0.568 ± 0.242 +0.195 ± 0.105
=m b −0.770 ± 0.163 +0.672 ± 0.052 −0.394 ± 0.362 +0.462 ± 0.051
<e c −0.096 ± 0.155 +0.192 ± 0.096 +0.341 ± 0.061 +0.197 ± 0.073
=m c −0.322 ± 0.107 −0.279 ± 0.063 +0.140 ± 0.159 −0.145 ± 0.061
<e d +0.115 ± 0.107 −0.056 ± 0.174 +0.073 ± 0.124 −0.122 ± 0.101
=m d −0.194 ± 0.087 −0.182 ± 0.070 −0.249 ± 0.065 −0.114 ± 0.066
<e e +0.466 ± 0.166 +0.704 ± 0.099 +0.308 ± 0.165 +0.589 ± 0.049

σKos”ko = +<e a?c sin(θ + θ2) − <e b?d sin θ2

+=m c?e cos(θ + θ2) (2.18)
σKok”so = −<e a?c sin(θ + θ2) − <e b?d sin θ2

−=m c?e cos(θ + θ2) (2.19)
σKok”ko = −<e a?c cos(θ + θ2) + <e b?d cos θ2

+=m c?e sin(θ + θ2) (2.20)
σNonsk = −<e d?e sin θ

+=m a?d cos θ + =m b?c (2.21)
σNonkk = +<e d?e cos θ + =m a?d sin θ (2.22)
σNos”sn = −<e c?e cos(θ + θ2) − =m b?d sin θ2

−=m a?c sin(θ + θ2) (2.23)
σNos”nk = +<e b?e sin(θ + θ2) + =m c?d cos θ2

−=m a?b cos(θ + θ2) (2.24)
σNok”nk = −<e b?e cos(θ + θ2) + =m c?d sin θ2

−=m a?b sin(θ + θ2) (2.25)

σNos”kn = +<e c?e sin(θ + θ2) + =m b?d cos θ2

−=m a?c cos(θ + θ2) (2.26)
σNok”kn = −<e c?e cos(θ + θ2) + =m b?d sin θ2

−=m a?c sin(θ + θ2) (2.27)

The differential cross section is the only absolute quan-
tity (mb/sr). The spin-dependent observables, multiplied
by the differential cross section, are bilinear combinations
of the real and imaginary parts of amplitudes. The bilin-
ear terms are invariant with respect to the introduction
of an arbitrary phase common to all amplitudes. In the
DRSA we forced the amplitude e to be real, i.e

e = <e e = |e| ≥ 0, =m e = 0, φe = 0 . (2.28)

All amplitude phases are then given relative to φe, and
only 9 parameters are to be determined in the DRSA.

In the PSA the scattering amplitudes are developed
into series of Legendre polynomials and the partial wave
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Table 4. (continued)

Results at 2.10GeV. The ratios of χ2/DF are given in brackets after the solution number

Amplitude θ = 55.1◦ θ = 55.1◦ θ = 65.0◦ θ = 73.7◦

(
√

mb/sr) Sol. 2 (0.82) Sol. 3 (0.75) Sol. 1 (1.19) Sol. 1 (0.86)

<e a +0.130 ± 0.063 +0.172 ± 0.080 +0.061 ± 0.005 +0.055 ± 0.004
=m a +0.555 ± 0.089 −0.598 ± 0.046 +0.170 ± 0.046 +0.080 ± 0.043
<e b +0.303 ± 0.129 +0.324 ± 0.126 +0.224 ± 0.072 +0.202 ± 0.078
=m b +0.382 ± 0.091 −0.383 ± 0.115 +0.326 ± 0.051 +0.274 ± 0.058
<e c +0.282 ± 0.053 +0.257 ± 0.043 +0.100 ± 0.051 +0.017 ± 0.072
=m c +0.041 ± 0.065 +0.072 ± 0.081 −0.183 ± 0.029 −0.166 ± 0.023
<e d +0.113 ± 0.078 −0.097 ± 0.053 −0.125 ± 0.052 −0.161 ± 0.041
=m d +0.067 ± 0.060 −0.080 ± 0.044 −0.128 ± 0.050 −0.126 ± 0.047
<e e +0.369 ± 0.152 +0.268 ± 0.112 +0.517 ± 0.026 +0.492 ± 0.022

Amplitude θ = 73.7◦ θ = 73.7◦ θ = 82.0◦ θ = 82.0◦

(
√

mb/sr) Sol. 2 (0.90) Sol. 3 (1.05) Sol. 1 (0.81) Sol. 2 (0.85)

<e a +0.060 ± 0.006 +0.067 ± 0.010 +0.030 ± 0.004 +0.031 ± 0.004
=m a +0.195 ± 0.041 +0.294 ± 0.067 +0.016 ± 0.033 +0.088 ± 0.042
<e b −0.198 ± 0.079 +0.341 ± 0.018 +0.117 ± 0.060 −0.146 ± 0.070
=m b +0.274 ± 0.054 +0.033 ± 0.040 +0.232 ± 0.034 +0.207 ± 0.050
<e c +0.025 ± 0.074 +0.107 ± 0.030 −0.026 ± 0.061 −0.011 ± 0.064
=m c −0.169 ± 0.023 −0.124 ± 0.030 −0.183 ± 0.021 −0.193 ± 0.018
<e d +0.138 ± 0.051 −0.197 ± 0.021 −0.150 ± 0.027 +0.155 ± 0.036
=m d −0.155 ± 0.037 +0.033 ± 0.023 −0.114 ± 0.019 −0.101 ± 0.038
<e e +0.457 ± 0.028 +0.403 ± 0.053 +0.465 ± 0.022 +0.459 ± 0.023

Amplitude θ = 85.4◦ θ = 85.4◦ θ = 90.0◦ θ = 90.0◦

(
√

mb/sr) Sol. 1 (0.56) Sol. 2 (0.49) Sol. 1 (0.74) Sol. 2 (0.57)

<e a +0.020 ± 0.004 +0.020 ± 0.004 −0.008 ± 0.003 −0.008 ± 0.004
=m a +0.011 ± 0.031 +0.036 ± 0.036 +0.012 ± 0.028 −0.028 ± 0.043
<e b +0.115 ± 0.058 −0.090 ± 0.069 +0.083 ± 0.048 −0.131 ± 0.050
=m b +0.221 ± 0.033 +0.222 ± 0.034 +0.184 ± 0.025 −0.151 ± 0.048
<e c −0.050 ± 0.057 −0.057 ± 0.053 −0.068 ± 0.051 −0.088 ± 0.047
=m c −0.186 ± 0.024 −0.195 ± 0.021 −0.205 ± 0.021 −0.216 ± 0.020
<e d −0.143 ± 0.027 +0.154 ± 0.032 −0.124 ± 0.025 +0.160 ± 0.026
=m d −0.118 ± 0.015 −0.101 ± 0.030 −0.114 ± 0.009 −0.062 ± 0.040
<e e +0.481 ± 0.022 +0.480 ± 0.022 +0.439 ± 0.011 +0.459 ± 0.012

amplitudes SJ , SJJ , SJ−1,J , SJ+1,J , SJ are independent
of the scattering angle [52–55]. The partial wave ampli-
tudes depend on phase shifts δLJ , labeled with orbital
and total angular momentum subscripts. According to the
spectroscopic notation, the orbital angular momenta L
ranging from 0 to 10 are denoted by capital letters S, P, D,
F, G, H, I, J, L, M, N, respectively. The subscripts denote
the total angular momentum and the superscripts denote
the spin state (singlet or triplet). For the nucleon-nucleon
interaction one has

(−1)L+s+I = −1 (2.29)

where I is the isospin. The spectroscopic notation is used
in the tables and figures below.

For singlet and uncoupled-triplet partial waves (L =
J), we have

SJ = exp(2iδJ) , SJJ = exp(2iδJJ) . (2.30)

Coupled-triplet partial wave amplitudes also contain mix-
ing parameters εJ which relate phase shifts with the or-
bital momenta L = J ± 1.

SJ�1,J = cos 2εJ exp [2iδJ�1,J ] − 1 , (2.31)

SJ = i sin 2εJ exp [i(δJ+1,J + δJ−1,J)] . (2.32)

The infinite polynomial series are cut at the orbital
angular momentum Lmax. Residual terms from Lmax to
infinity are replaced by the peripheral part of the interac-
tion, well described by the one-pion-exchange contribution
(OPE) [53–55]. The introduction of OPE contribution also
insures stability of the PSA solutions, i.e. the low phase
shifts change very little if Lmax is changed. The OPE con-
tribution, calculated from the Born approximation, sup-
plements only the real parts of higher phase shifts.

The aim of phase shift analyses is to determine the
nuclear part of the interaction, namely “nuclear bar phase
shifts”. The known electromagnetic amplitudes depending
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Table 5. Scattering amplitudes at 2.40GeV. The ratios of χ2/DF are given in brackets
after the solution number

Amplitude θ = 29.3◦ θ = 29.3◦ θ = 38.8◦ θ = 38.8◦

(
√

mb/sr) Sol. 1 (0.89) Sol. 2 (0.88) Sol. 1 (0.51) Sol. 2 (0.31)

<e a +1.599 ± 0.680 +1.767 ± 0.578 +0.355 ± 0.078 +0.491 ± 0.207
=m a +1.581 ± 0.508 +1.461 ± 0.553 +0.859 ± 0.129 +0.932 ± 0.074
<e b +1.721 ± 0.474 +2.066 ± 0.110 +0.440 ± 0.301 +0.697 ± 0.254
=m b +0.957 ± 0.798 +0.220 ± 0.730 +0.831 ± 0.162 +0.598 ± 0.278
<e c +0.296 ± 0.413 −0.032 ± 0.549 +0.263 ± 0.270 −0.362 ± 0.172
=m c −0.610 ± 0.311 −0.158 ± 0.519 −0.194 ± 0.263 +0.129 ± 0.210
<e d +0.459 ± 0.314 +0.356 ± 0.319 −0.202 ± 0.282 +0.230 ± 0.166
=m d −0.515 ± 0.390 −0.519 ± 0.386 +0.022 ± 0.234 −0.228 ± 0.142
<e e +0.842 ± 0.354 +0.766 ± 0.248 +0.809 ± 0.168 +0.586 ± 0.242

Amplitude θ = 38.8◦ θ = 51.3◦ θ = 51.3◦ θ = 51.3◦

(
√

mb/sr) Sol. 3 (0.36) Sol. 1 (0.96) Sol. 2 (1.03) Sol. 3 (1.19)

<e a +0.722 ± 0.575 +0.116 ± 0.040 +0.149 ± 0.084 +0.184 ± 0.079
=m a −0.916 ± 0.326 +0.387 ± 0.140 +0.477 ± 0.118 −0.526 ± 0.036
<e b +0.783 ± 0.513 +0.313 ± 0.212 +0.341 ± 0.267 +0.269 ± 0.155
=m b −0.542 ± 0.772 +0.361 ± 0.182 +0.372 ± 0.229 −0.439 ± 0.103
<e c +0.112 ± 0.257 +0.226 ± 0.209 −0.168 ± 0.099 +0.142 ± 0.082
=m c +0.265 ± 0.209 +0.069 ± 0.198 +0.058 ± 0.084 +0.006 ± 0.109
<e d −0.172 ± 0.135 −0.198 ± 0.090 −0.147 ± 0.187 +0.007 ± 0.079
=m d −0.117 ± 0.144 +0.110 ± 0.066 −0.124 ± 0.114 +0.114 ± 0.067
<e e +0.398 ± 0.317 +0.426 ± 0.135 +0.328 ± 0.177 +0.268 ± 0.108

Amplitude θ = 51.3◦ θ = 65.6◦ θ = 65.6◦ θ = 65.6◦

(
√

mb/sr) Sol. 4 (0.71) Sol. 1 (0.90) Sol. 2 (0.90) Sol. 3 (0.90)

<e a +0.237 ± 0.309 +0.094 ± 0.030 +0.197 ± 0.157 +0.236 ± 0.310
=m a −0.532 ± 0.047 +0.264 ± 0.142 −0.310 ± 0.033 −0.358 ± 0.135
<e b +0.378 ± 0.334 +0.232 ± 0.140 +0.099 ± 0.182 +0.289 ± 0.164
=m b −0.293 ± 0.422 +0.231 ± 0.137 −0.312 ± 0.066 −0.154 ± 0.306
<e c −0.085 ± 0.227 −0.120 ± 0.064 +0.134 ± 0.056 −0.063 ± 0.108
=m c −0.225 ± 0.091 +0.069 ± 0.095 −0.035 ± 0.094 −0.123 ± 0.066
<e d +0.040 ± 0.082 −0.142 ± 0.059 +0.118 ± 0.049 −0.145 ± 0.043
=m d +0.101 ± 0.069 −0.048 ± 0.113 +0.093 ± 0.053 −0.038 ± 0.123
<e e +0.205 ± 0.267 +0.355 ± 0.112 +0.170 ± 0.136 +0.142 ± 0.186

Amplitude θ = 82.6◦ θ = 82.6◦ θ = 82.6◦ θ = 82.6◦

(
√

mb/sr) Sol. 1 (0.25) Sol. 2 (0.25) Sol. 3 (0.32) Sol. 4 (0.32)

<e a +0.030 ± 0.007 +0.032 ± 0.012 +0.030 ± 0.007 +0.030 ± 0.007
=m a +0.148 ± 0.114 +0.184 ± 0.150 +0.160 ± 0.102 +0.157 ± 0.101
<e b −0.111 ± 0.131 +0.041 ± 0.141 −0.075 ± 0.158 +0.156 ± 0.090
=m b +0.172 ± 0.085 +0.200 ± 0.036 +0.191 ± 0.063 +0.131 ± 0.103
<e c −0.136 ± 0.030 +0.135 ± 0.031 −0.106 ± 0.085 +0.137 ± 0.028
=m c +0.018 ± 0.129 +0.025 ± 0.091 +0.087 ± 0.095 +0.015 ± 0.125
<e d +0.101 ± 0.045 +0.111 ± 0.039 −0.076 ± 0.061 −0.080 ± 0.049
=m d +0.059 ± 0.053 +0.037 ± 0.077 +0.082 ± 0.048 +0.079 ± 0.036
<e e +0.299 ± 0.061 +0.278 ± 0.102 +0.295 ± 0.061 +0.296 ± 0.060

on the interacting particles and the interference terms are
added to the nuclear part [56–59].

Below the one-pion-production threshold TThr the
phase shifts δ and the mixing parameters εJ are real and
the unitarity condition automatically holds for the present
S-matrix parametrization. The inelasticities present above
TThr give rise to imaginary parts of the phase shifts [1].

Instead of the imaginary part of the mixing parameter
εJ the so-called “sixth parameter” αJ is introduced as
follows [3, 60–62]:

SJ = i sin 2εJ exp [i(δJ+1,J + δJ−1,J + αJ)] . (2.33)

The calculations showed that this parameter does not af-
fect the PSA results on the level of existing data accuracy.
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3 PSA and amplitude analysis
complementarity

In the following, we discuss the complementarity of the
DRSA amplitude analysis and the PSA method, their rel-
ative advantages and limits. We stress the necessity of a
check of PSA results by a direct reconstruction of the scat-
tering matrix, whenever an amplitude analysis is possible.

The DRSA is performed at one energy and one an-
gle, where it requires a complete set of measured observ-
ables [63]. For this reason it is always limited to a small
number of angles and it will never be a universal tool
predicting unknown quantities. The information provided
by an accurately measured angular dependence of observ-
ables is lost, or may be used only indirectly to eliminate
extraneous solutions. On the other hand, the amplitude
analysis is completely model independent. It gives a pure
phenomenological description of a given interaction chan-
nel without any additional conditions and has no energy
limit. Since the solution at one angle is independent of
those at other angles, the amplitude analysis can reveal
possible anomalies in angular or energy dependences.

In the PSA approach the reconstruction of scattering
amplitudes is possible even from incomplete sets of exper-
imental quantities [64]. The lack of observables at some
angles is compensated by imposed smooth functions of
angle which average possible anomalies in the angular de-
pendences of observables.

The differential cross section provides not only an ab-
solute normalization at all angles, but, in addition, plays
the same role as any other observable. Due to the angular
continuity ensured by the parametrization, including the
forward direction, and because the higher partial ampli-
tudes are fixed by OPE, the common phase of scattering
amplitudes is defined at all angles.

In an energy-dependent PSA, the phase shifts are
parametrized as functions of energy, as explained in [2,
60]. This imposes a relatively smooth energy dependence
on all parameters.

Assuming that the electromagnetic part of the nucleon-
nucleon elastic scattering is well known, the PSA below
the pion production threshold for a fixed isospin state
is practically model independent. At these energies only
OPE contribution may be considered as a weakly model-
dependent part.

With increasing energy the peripheral interaction de-
scribed by OPE is introduced at progressively higher Lmax

values. Due to the increasing importance of inelastic inter-
actions phase shifts may become complex. This increases
the number of free parameters. The only observable us-
able in the PSA which is directly related to the imaginary
parts of phase shifts is the total inelastic cross section. The
imaginary parts are poorly constrained for large angular
momenta and must be taken from models. With increas-
ing energy the PSA become more model dependent. An
upper energy limit for the validity of the PSA method is
however hard to estimate.

The best way of checking the validity of model-depen-
dent contributions to a PSA is to compare the PSA ampli-
tude predictions with the direct reconstruction from the

Fig. 5. Direct reconstruction of the scattering amplitudes at
1.80GeV: the real and imaginary parts of amplitudes a to e are
shown in

√
mb/sr as a function of the CM angle. The dashed

lines are the results of the present PSA, the solid line is the
VPI PSA [66]

amplitude analysis. In this respect, the amplitude anal-
ysis is complementary to the PSA. Agreement supports
the PSA which may then be used to predict unmeasured
quantities. A disagreement between the two methods ei-
ther suggests a possible anomaly in the database, or casts
a doubt on the PSA theoretical input.

Comparison of PSA with directly-reconstructed am-
plitudes is also important at low energy close to the pion
production threshold. The DRSA then provides a check
of the validity of different potential models (not treated
here, see [38]).

4 Database

The data used in the present PSA are summarized in
Tables 1a and b. For each energy the number of data
points for each observable are indicated as well as the χ2-
values. The major part of the spin-dependent observables
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Fig. 6. Direct reconstruction of the scattering amplitudes at
2.10GeV. See Fig. 5 for symbols

(∼ 94%) in the energy range were measured at SATURNE
II [6–19].

The differential cross sections included in the analysis
were often measured at energies which differed from the
central values of the PSA or the DRSA. In those cases
interpolation of the data was used.

Normalization factors for some data sets which gave
excessively large contributions were introduced as free pa-
rameters in the PSA. The same normalization factors were
employed in the DRSA data bases. Except for the 2.40 GeV
Aoono data from ANL-ZGS [34] (normalization factor =
1.24) only differential cross sections data were normalized.
The fact that these data were measured at slightly differ-
ent energies from the central values of the PSA solutions
might have affected the normalization factors. The recent
precise COSY [32] results which have not been normalized
play an important role.

In addition to the measured data, the values of ρ from
[37] (with a 5% relative error) and the total inelastic cross
sections from [36] were introduced into PSA.

Fig. 7. Direct reconstruction of the scattering amplitudes at
2.40GeV. See Fig. 5 for symbols

5 Minimization procedure

At all energies, the search for PSA solutions was per-
formed starting from random initial phase shift values[1].
The real part of the phase shifts starting from 3J7 were
fixed to the OPE contribution except for <e 3J8 which was
always fitted in accordance with our previous conclusions
at 1.80 GeV [3]. The imaginary parts of the phase shifts
starting from 3J6 were fixed to the values of a dispersion
relation calculation by the Paris group [48]. The imaginary
parts at 1.80 and 2.10 GeV were fixed to zero starting at
3L9. At 2.40 and 2.70 GeV phases above =m 3N10 were
set to zero. It is obvious that different theoretical input
for the high–L imaginary parts of phase shifts will change
the PSA solutions.

At each of the three lower energies one solution was
found. Due to a lack of data, =m 3H6 and ε6 were fixed
by theoretical input at 2.70 GeV. Keeping these two phase
shifts free provided a solution that was similar but the pro-
gram had difficulty converging. At 2.70 GeV two different
solutions were found. One was the solution obtained by
starting the minimization procedure from the phase shifts
at 2.40 GeV, the second one was obtained in a search with
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Fig. 8. Direct reconstruction of the scattering amplitudes at
2.70GeV. Dashed and solid lines are A and B PSA solutions
respectively

random initial values. The two solutions have similar χ2

values. The total number of points, and the χ2 values per
degree of freedom (DF) of the PSA are listed in Table 1b.

For the DRSA the same database as for PSA was used.
The analysis was performed at a few angles where a com-
plete set of observables, within a small angle range exists.
The experimental data for each observable were first in-
terpolated to a common central angle. Search for solutions
from random initial amplitudes was repeated several hun-
dred times. In a few cases the solution was unique, usually
2 to 6 solutions were found. Solutions with large χ2 values
were omitted, as well as those which had very large er-
rors on the amplitudes. In rare cases, other non-statistical
criteria, which required smooth behaviour of some observ-
able in a restrained angular interval, were used in order
to reduce the number of solutions. These criteria were de-
scribed in detail in [65] and will not be treated here. The
comparison with PSA results was not used as a selection
criterion.

Table 6. Scattering amplitudes at 2.70GeV. The ratios of
χ2/DF are given in brackets after the solution number

Amplitude θ = 41.6◦ θ = 81.5◦ θ = 81.5◦

(
√

mb/sr) Sol. 1 (0.38) Sol. 1 (0.44) Sol. 2 (0.38)

<e a +0.148 ± 0.073 +0.030 ± 0.014 +0.044 ± 0.050
=m a +0.486 ± 0.224 +0.174 ± 0.166 +0.254 ± 0.132
<e b +0.286 ± 0.381 +0.058 ± 0.219 +0.083 ± 0.115
=m b +0.627 ± 0.184 +0.186 ± 0.071 +0.178 ± 0.051
<e c +0.383 ± 0.142 −0.111 ± 0.039 +0.103 ± 0.042
=m c −0.070 ± 0.492 −0.019 ± 0.133 −0.039 ± 0.079
<e d −0.334 ± 0.177 +0.091 ± 0.038 +0.077 ± 0.052
=m d −0.127 ± 0.312 −0.014 ± 0.063 +0.035 ± 0.065
<e e +0.813 ± 0.140 +0.256 ± 0.114 +0.177 ± 0.200

6 Results and discussion

Numerical values of the phase shifts at the four energies
1.80, 2.10, 2.40 and 2.70 GeV are given in Table 2. The
phases fixed using theoretical input are also listed. The
errors represent the square roots of the error matrix diag-
onal elements. At each energy the PSA describes existing
experimental points very well as can be seen from χ2 val-
ues in Table 1b. The energy dependence of the real and
imaginary parts of phase shifts 1S0 to 1I6 are shown in
Figs. 1 to 4 in the energy interval from 1.0 to 2.70 GeV.
Open stars and open circles denote the present results,
black stars and circles are our previous results from [3].
Dashed lines are OPE predictions and solid lines are the
results of the Virginia Polytechnic Institute (VPI) energy-
dependent PSA (SM97)[66] below 2.55 GeV. In this anal-
ysis the data from [17–19] were not yet included. Differ-
ences between the two PSA show the importance of the
data lacking in [66].

Phase shifts are different in our and in VPI PSA: the
singlet phase shifts (see Fig. 1) have a similar trend, the
major disagreements start with the F waves. In the VPI
analysis, there is no imaginary contribution coming from
3F2 and 3H4 phase shifts, the real part of 3F3 and 3F4 are
totally different.

In the present PSA =m 3P0 has been found consistent
with zero and fixed at this value at all energies except
for solution B at 2.70 GeV. Because of this disagreement,
it was interesting to compare the angular dependence of
the scattering amplitudes, calculated by the PSA with the
results of the DRSA.

The DRSA results are given in Tables 3 to 6 and are
plotted in Figs. 5 to 8. The different solutions are repre-
sented by different symbols (stars, squares and circles).
We see good agreement of the majority of solutions with
the present PSA calculations over the entire angular in-
terval at the three lower energies. One exception is the
difference between PSA and DRSA results for <e c and
<e d at 1.80 GeV below 45�CM . Note that this amplitude
is small. At 2.70 GeV a DRSA was possible only at two
angles. As seen in Figs. 5 to 8, amplitudes a, b and e are
dominant at all energies.

The scattering amplitudes calculated by VPI PSA
show a striking disagreement with the amplitudes from the
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present PSA. This can be easily observed below 55�CM
in =m a and =m b. Smaller disagreements can be ob-
served for <e a and <e b. On the other hand, the VPI
PSA agrees better with the alternate DRSA solutions at
2.10 and 2.40 GeV for =m a and =m b. This is also true
for <e e at 1.80 and 2.10 GeV. At large angles there is a
better agreement between the two PSA. One can assume
that the disagreement will be reduced when all experimen-
tal points have been introduced in the VPI PSA.

7 Conclusions

A phase shift analysis and a direct amplitude reconstruc-
tion have been completed at four energies between 1.80
and 2.70 GeV. The results of the two complementary anal-
yses agree well at all energies and give a good description
of existing data points. Disagreement with the VPI PSA is
likely to be due to the incomplete data base in that work.
The predictions of observables will help for a planning of
possible future experiments in particular at COSY.

The pp elastic differential cross sections, measured with
internal proton beam during its acceleration at COSY, im-
prove the absolute normalization at the three low energies.
The present PSA show that these data need no renormal-
ization. It is expected that the same accelerator will pro-
vide soon analyzing power and spin correlation data using
a polarized internal or extracted beam and either an in-
ternal polarized proton jet-target or an external polarized
target. Measurements of any observable at small angles
are highly desirable in order to improve PSA and DRSA
solutions below 40�CM .

Above the COSY energy limit one expects a comple-
tion of the existing pp spin-dependent database by elastic
or quasielastic data measured at the JINR Dubna accel-
erator complex below 5 GeV. At higher energies, where
the database is completely insufficient, only the KEK and
BNL accelerators may provide new data in a reasonable
delay.
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J. Bystrický et al.: Direct reconstruction of pp elastic scattering amplitudes 621

52. H.P. Stapp, T.J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1957)

53. P. Cziffra, M.H. MacGregor, M.J. Moravcsik, and H.P.
Stapp, Phys. Rev. 114, 880 (1959)

54. M.H. MacGregor, M.J. Moravcsik, and H.P. Stapp, Ann.
Rev. Nucl. Sci. 10, 291 (1960)

55. N. Hoshizaki, Suppl. Prog. Theor. Phys. D 42, 1, 107
(1968)

56. G. Breit and H. Ruppel, Phys. Rev. 127, 2123 (1962)
57. A. Gersten, Nucl. Phys. A 290, 445 (1977)
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